Affiliation:
1. Department of Civil, Environmental and Construction Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00185 Rome, Italy
2. Mediterranean Institute of Fundamental Physics (MIFP), Via Appia Nuova 31, 00047 Marino, Italy
Abstract
In the last decades, climate change has led to increasingly frequent drought events within the Mediterranean area, creating an urgent need of a more sustainable management of groundwater resources exploited for drinking and agricultural purposes. One of the most challenging issues is to provide reliable simulations and forecasts of karst spring discharges, whose reduced information, as well as the hydrological processes involving their feeding aquifers, is often a big issue for water service managers and researchers. In order to plan a sustainable water resource exploitation that could face future shortages, the groundwater availability should be assessed by continuously monitoring spring discharge during the hydrological year, using collected data to better understand the past behaviour and, possibly, forecast the future one in case of severe droughts. The aim of this paper is to understand the factors that govern different spring discharge patterns according to rainfall inputs and to present a model, based on artificial neural network (ANN) data training and cross-correlation analyses, to evaluate the discharge of some karst spring in the Umbria region (Central Italy). The model used is a fully connected neural network (FCNN) and has been used both for filling gaps in the spring discharge time series and for simulating the response of six springs to rainfall seasonal patterns from a 20-year continuous daily record, collected and provided by the Regional Environmental Protection Agency (ARPA) of the Umbria region.
Reference65 articles.
1. Karst water resources in a changing world;Hartmann;Rev. Geophys.,2013
2. Karst waters in potable water supply: A global scale overview;Environ. Earth Sci.,2019
3. Hartmann, A. (2021, January 19–30). The karst and the furious—Ways to keep calm when dealing with karst hydrology. Proceedings of the EGU General Assembly 2021, Online. EGU21-1353.
4. Quantifying the historic and future response of karst spring discharge to climate variability and change at a snow-influenced temperate catchment in central Europe;Fan;Hydrogeol. J.,2023
5. Fiorillo, F., and Malik, P. (2019). Hydraulic behavior of karst aquifers. Water, 11.