Trends and Drivers of Flood Occurrence in Germany: A Time Series Analysis of Temperature, Precipitation, and River Discharge

Author:

Alobid Mohannad1,Chellai Fatih2ORCID,Szűcs István1ORCID

Affiliation:

1. Faculty of Economic and Business, Institute of Economics, Department of Agricultural Policy and Environmental Economics, University of Debrecen, Böszörményi St. 138, H-4032 Debrecen, Hungary

2. Faculty of Economics, Commerce and Management, Ferhat Abbas University, Sétif 19000, Algeria

Abstract

Floods in Germany have become increasingly frequent and severe over recent decades, with notable events in 2002, 2013, and 2021. This study examines the trends and drivers of flood occurrences in Germany from 1990 to 2024, focusing on the influence of climate-change-related variables, such as temperature, precipitation, and river discharge. Using a comprehensive time series analysis, including Auto-Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) models and correlation and regression analyses, we identify significant correlations between these climatic variables and flood events. Our findings indicate that rising temperatures (with a mean of 8.46 °C and a maximum of 9 °C) and increased precipitation (averaging 862.26 mm annually)are strongly associated with higher river discharge (mean 214.6 m3/s) and more frequent floods (mean 197.94 events per year). The ANN model outperformed the ARIMA model in flood forecasting, showing lower error metrics (e.g., RMSE of 10.86 vs. 18.83). The analysis underscores the critical impact of climate change on flood risks, highlighting the necessity of adaptive flood-management strategies that incorporate the latest climatic and socio-economic data. This research contributes to the understanding of flood dynamics in Germany and provides valuable insights into future flood risks. Combining flood management with groundwater recharge could effectively lower flood risks and enhance water resources’ mitigation and management.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3