Muscular Oxygen Saturation and Hemoglobin Concentration during Freediving: A Case Study

Author:

Vrdoljak Dario1ORCID,Dujić Željko2,Foretić Nikola13

Affiliation:

1. Faculty of Kinesiology, University of Split, 21000 Split, Croatia

2. Department of Integrative Physiology, School of Medicine, University of Split, 21000 Split, Croatia

3. High Performance Sport Center, Croatian Olympic Committee, 10000 Zagreb, Croatia

Abstract

Lower limb muscle fatigue is the main reason for withdrawal from diving. Therefore, this study aimed to determine the local muscle oxygen saturation and hemoglobin concentration in the vastus lateralis muscle during different freediving disciplines. One freediver participated in this study, and his chronological age was 40 years, body mass 75.0 kg, body height 184.0 cm, and body fat 13.7%. The participant has been practicing freediving for 6 years. The variables in this study included anthropometric indices, heart rate, and muscle oxygen dynamics parameters (SmO2 (oxygen muscle saturation) and tHb (total hemoglobin)). The variables were measured during five diving disciplines: static apnea, bifin, dynamic no fins (DNF), monofin, and sneaking. Measurements were performed during intensive training/competition during the diving season in August 2023. The results of this study showed that when oxygen starts to decrease during the dive, the tHb increases. Furthermore, the times at which maximal tHb and minimal SmO2 were achieved are also shown. These parameters occurred at almost the same time across all disciplines: static (SmO2, 142; tHb, 150 s), bifin (SmO2, 153; tHb, 148 s), DNF (SmO2, 162; tHb, 178 s), monofin (SmO2, 96; tHb, 94 s), and sneaking (SmO2, 212; tHb, 228 s). Also, differences in tHb and SmO2 were present between diving disciplines. In particular, the highest increase in tHb was present in bifin (0.0028 AU/s), whereas monofin showed a decrease (−0.0009 AU/s). On the other hand, the highest desaturation was seen in bifin (−0.87%/s) and the lowest in sneaking (−0.29%/s) These findings emphasize the physiological characteristics of freedivers engaging in different freediving disciplines that influence muscles during the dive. Such responses could be observed through a concurrent hypoxia/hypercapnia and a transient reduction in the Fahraeus effect.

Publisher

MDPI AG

Reference32 articles.

1. Predicting performance in competitive apnea diving, part II: Dynamic apnoea;Schagatay;Diving Hyperb. Med.,2010

2. Physiology of static breath holding in elite apneists;Bain;Exp. Physiol.,2018

3. Kjeld, T., Stride, N., Gudiksen, A., Hansen, E.G., Arendrup, H.C., Horstmann, P.F., Zerahn, B., Jensen, L.T., Nordsborg, N., and Bejder, J. (2018). Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers. PLoS ONE, 13.

4. Breath-hold diving;Compr. Physiol.,2018

5. Human breath-hold diving ability and the underlying physiology;Schagatay;Hum. Evol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3