Integrated PSInSAR and GNSS for 3D Displacement in the Wudongde Area

Author:

Huang Jiaxuan1,Du Weichao2,Jin Shaoxia1,Xie Mowen3

Affiliation:

1. Chinese-German Institute of Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. 32023 Troops, Dalian 116023, China

3. Department of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The major limitation of persistent scatterer interferometric synthetic aperture radar (PSInSAR) is that it detects only one- or two-dimensional displacements, such as those in the line of sight (LOS) and azimuth directions, by repeat-pass SAR observations. Three-dimensional (3D) displacement reflects the actual sliding surface and failure mechanism of a slope. To transform LOS deformation into a reliable 3D displacement, a new approach for obtaining the 3D displacement is proposed herein based on the slope deformation (Dslope). First, the deformation value calculated using the Global Navigation Satellite System (GNSS) as a constraint is used to eliminate the residual deformation of PSInSAR. Then, Dslope is obtained from the relationship between DLOS and the slope angle extracted from the digital elevation model (DEM). Finally, according to the geometric relationship between Dslope and DLOS, a novel approach for calculating 3D displacement is proposed. When comparing the 3D displacement extracted by the proposed method and that from GNSS data in Jinpingzi landslide, the root-mean-square error (RMSE) values were ±2.0 mm, ±2.8 mm, and ±2.6 mm in the vertical, north, and east directions, respectively. The proposed method shows high accuracy in 3D displacement calculation, which can help to determine the failure mechanism of a landslide. This method can be widely used in landslide monitoring in wide areas.

Funder

Zhejiang Provincial Natural Science Foundation of China

Scientific research project of Zhejiang Provincial Department of Education

Youth foundation of Zhejiang University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3