Impacts of Land Use Conversion on Soil Erosion in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains

Author:

Guo Ziqi1,Yan Zhaojin234ORCID,He Rong5,Yang Hui23ORCID,Ci Hui23,Wang Ran23

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

3. Key Laboratory of Coal Bed Gas Resources and Forming Process of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China

4. Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, China University of Mining and Technology, Xuzhou 221008, China

5. Department of Civil, Environmental and Sustainable Engineering, Santa Clara University, Santa Clara, CA 95053, USA

Abstract

The serious problem of soil erosion not only has a profound impact on people’s lives but also results in a series of ecological and environmental challenges. To determine the impact of changes in land use type on soil erosion in the urban agglomeration on the northern slopes of the Tianshan Mountains, this study commences by employing the InVEST-SDR (integrated valuation of ecosystem services and tradeoffs–sediment delivery ratio) model to calculate soil erosion levels spanning from 2000 to 2020. Subsequently, it forecasts land use and land cover (LULC) conditions for the year 2030 under three scenarios: Q1 (natural development), Q2 (ecological protection), and Q3 (economic priority). This projection is accomplished through the integration of a coupled Markov chain and multi-objective planning model (MOP) alongside patch-generating land use simulation (PLUS) models. Ultimately, based on these outcomes, the study predicts soil erosion levels for the year 2030. There has been a consistent decline in soil erosion from 2000 to 2020 with high-intensity erosion concentrated in the Tianshan Mountain region. Grasslands, glaciers, and permafrost are identified as the most erosion-prone land types in the study area, with forests exhibiting the highest capacity for soil retention. Converting from grassland and barren land to forest within the same area results in a substantial reduction in soil erosion, specifically by 27.3% and 46.3%, respectively. Furthermore, the transformation from barren land to grassland also leads to a noteworthy 19% decrease in soil erosion. Over the past two decades, the study area has witnessed a significant decline in the area of grasslands, with a notable shift towards barren and impervious surfaces due to economic development and mining activities. The three predicted scenarios depict significant expansion towards barren land, grassland, and impervious area, respectively. Soil erosion decreases under different shared socio-economic pathway (SSP) scenarios relative to 2020. There is an increase in soil erosion in the Q1 scenario and in the Q3 scenario, whereas the amount of soil erosion in the Q2 scenario exhibits a continued decrease when only the effect of land change on soil erosion is considered. Persistently rapid economic development can exacerbate soil erosion problems, underscoring the need to find a balance between economic growth and ecological conservation. As economic expansion slows down, greater emphasis should be placed on environmental protection to maintain ecological stability.

Funder

Third Xinjiang Scientific Expedition Program

Xinjiang Uygur Autonomous Region Key Research and Development Program

Jiangsu Province Double Innovation Doctoral Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Open Research Fund of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3