A Generalized Linear Model and Machine Learning Approach for Predicting the Frequency and Severity of Cargo Insurance in Thailand’s Border Trade Context

Author:

Panjee Praiya1ORCID,Amornsawadwatana Sataporn1

Affiliation:

1. School of Engineering, University of the Thai Chamber of Commerce, Bangkok 10400, Thailand

Abstract

The study compares model approaches in predictive modeling for claim frequency and severity within the cross-border cargo insurance domain. The aim is to identify the optimal model approach between generalized linear models (GLMs) and advanced machine learning techniques. Evaluations focus on mean absolute error (MAE) and root mean squared error (RMSE) metrics to comprehensively assess predictive performance. For frequency prediction, extreme gradient boosting (XGBoost) demonstrates the lowest MAE, indicating higher accuracy compared to gradient boosting machines (GBMs) and a generalized linear model (Poisson). Despite XGBoost’s lower MAE, it shows higher RMSE values, suggesting a broader error spread and larger magnitudes compared to gradient boosting machines (GBMs) and a generalized linear model (Poisson). Conversely, the generalized linear model (Poisson) showcases the best RMSE values, indicating tighter clustering and smaller error magnitudes, despite a slightly higher MAE. For severity prediction, extreme gradient boosting (XGBoost) displays the lowest MAE, implying better accuracy. However, it exhibits a higher RMSE, indicating wider error dispersion compared to a generalized linear model (Gamma). In contrast, a generalized linear model (Gamma) demonstrates the lowest RMSE, portraying tighter clustering and smaller error magnitudes despite a higher MAE. In conclusion, extreme gradient boosting (XGBoost) stands out in mean absolute error (MAE) for both frequency and severity prediction, showcasing superior accuracy. However, a generalized linear model (Gamma) offers a balance between accuracy and error magnitude, and its performance outperforms extreme gradient boosting (XGBoost) and gradient boosting machines (GBMs) in terms of RMSE metrics, with a slightly higher MAE. These findings empower insurance companies to enhance risk assessment processes, set suitable premiums, manage reserves, and accurately forecast claim occurrences, contributing to competitive pricing for clients while ensuring profitability. For cross-border trade entities, such as trucking companies and cargo owners, these insights aid in improved risk management and potential cost savings by enabling more reasonable insurance premiums based on accurate predictive claims from insurance companies.

Publisher

MDPI AG

Reference45 articles.

1. A Proposed Model to Predict Auto Insurance Claims using Machine Learning Techniques;Abdelhadi;Journal of Theoretical and Applied Information Technology,2020

2. Abhishek (2023, November 27). Generalized Linear Models (GLMs). Medium. Available online: https://abhic159.medium.com/generalized-linear-models-glms-7b6e6c475d82.

3. Ahlgren, Marcus (2018). Claims Reserving Using Gradient Boosting and Generalized Linear Models, KTH Royal Institute of Technology.

4. Performance Evaluation of Outlier Detection Techniques in Production Time Series: A Systematic Review and Meta-Analysis;Alimohammadi;Expert Systems with Applications,2022

5. Machine Learning from Theory to Algorithms: An Overview;Alzubi;Journal of Physics Conference Series,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3