Insurance Analytics with Clustering Techniques

Author:

Jamotton Charlotte1ORCID,Hainaut Donatien1,Hames Thomas2

Affiliation:

1. Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium

2. Detralytics, Rue Belliard 2-B, 1040 Brussels, Belgium

Abstract

The K-means algorithm and its variants are well-known clustering techniques. In actuarial applications, these partitioning methods can identify clusters of policies with similar attributes. The resulting partitions provide an actuarial framework for creating maps of dominant risks and unsupervised pricing grids. This research article aims to adapt well-established clustering methods to complex insurance datasets containing both categorical and numerical variables. To achieve this, we propose a novel approach based on Burt distance. We begin by reviewing the K-means algorithm to establish the foundation for our Burt distance-based framework. Next, we extend the scope of application of the mini-batch and fuzzy K-means variants to heterogeneous insurance data. Additionally, we adapt spectral clustering, a technique based on graph theory that accommodates non-convex cluster shapes. To mitigate the computational complexity associated with spectral clustering’s O(n3) runtime, we introduce a data reduction method for large-scale datasets using our Burt distance-based approach.

Funder

Excellence of Science

Publisher

MDPI AG

Reference34 articles.

1. Customer segmentation and profiling for life insurance using k-modes clustering and decision tree classifier;Arifin;International Journal of Advanced Computer Science and Applications,2021

2. Belkin, Mikhail, and Niyogi, Partha (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems, 14. Available online: https://proceedings.neurips.cc/paper_files/paper/2001/file/f106b7f99d2cb30c3db1c3cc0fde9ccb-Paper.pdf.

3. Fcm: The fuzzy c-means clustering algorithm;Bezdek;Computers & Geosciences,1984

4. The factorial analysis of qualitative data;Burt;British Journal of Statistical Psychology,1950

5. Campo, Bavo D. C., and Antonio, Katrien (2024). On clustering levels of a hierarchical categorical risk factor. Annals of Actuarial Science, 1–39. Available online: https://www.cambridge.org/core/journals/annals-of-actuarial-science/article/on-clustering-levels-of-a-hierarchical-categorical-risk-factor/1D8A7F6E50B9BFA70478815ABEA1B128#article.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3