Quadratic Unconstrained Binary Optimization Approach for Incorporating Solvency Capital into Portfolio Optimization

Author:

Turkalj Ivica1,Assadsolimani Mohammad2,Braun Markus3,Halffmann Pascal1ORCID,Hegemann Niklas3,Kerstan Sven3,Maciejewski Janik4,Sharma Shivam1,Zhou Yuanheng3

Affiliation:

1. Department of Financial Mathematics, Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

2. DZ BANK AG, Platz der Republik, 60325 Frankfurt am Main, Germany

3. JoS QUANTUM GmbH, Platz der Einheit 2, 60327 Frankfurt Am Main, Germany

4. R+V Lebensversicherung AG, Raiffeisenplatz 2, 65189 Wiesbaden, Germany

Abstract

In this paper, we consider the inclusion of the solvency capital requirement (SCR) into portfolio optimization by the use of a quadratic proxy model. The Solvency II directive requires insurance companies to calculate their SCR based on the complete loss distribution for the upcoming year. Since this task is, in general, computationally challenging for insurance companies (and therefore, not taken into account during portfolio optimization), employing more feasible proxy models provides a potential solution to this computational difficulty. Here, we present an approach that is also suitable for future applications in quantum computing. We analyze the approximability of the solvency capital ratio in a quadratic form using machine learning techniques. This allows for an easier consideration of the SCR in the classical mean-variance analysis. In addition, it allows the problem to be formulated as a quadratic unconstrained binary optimization (QUBO), which benefits from the potential speedup of quantum computing. We provide a detailed description of our model and the translation into a QUBO. Furthermore, we investigate the performance of our approach through experimental studies.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Reference24 articles.

1. Coherent measures of risk;Artzner;Mathematical Finance,1999

2. On the calculation of the solvency capital requirement based on nested simulations;Bauer;ASTIN Bulletin,2012

3. pymoo: Multi-objective optimization in python;Blank;IEEE Access,2020

4. Braun, Markus, Decker, Thomas, Gallezot, Marcelin, Hegemann, Niklas, Kerstan, Sven, and Zhou, Yuanheng (2023, November 29). pygrnd. Available online: https://github.com/JoSQUANTUM/pygrnd.

5. Multicriteria asset allocation in practice;Grindel;OR Spectrum,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3