On the Use of Lehmann’s Alternative to Capture Extreme Losses in Actuarial Science

Author:

Gómez-Déniz  Emilio1ORCID,Calderín-Ojeda  Enrique2ORCID

Affiliation:

1. Department of Quantitative Methods in Economics and TiDES, University of Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain

2. Department of Economics, University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

This paper studies properties and applications related to the mixture of the class of distributions built by the Lehmann’s alternative (also referred to in the statistical literature as max-stable or exponentiated distribution) of the form [G(·)]λ, where λ>0 and G(·) is a continuous cumulative distribution function. This mixture can be useful in economics, financial, and actuarial fields, where extreme and long tails appear in the empirical data. The special case in which G(·) is the Stoppa cumulative distribution function, which is a good description of the random behaviour of large losses, is studied in detail. We provide properties of this mixture, mainly related to the analysis of the tail of the distribution that makes it a candidate for fitting actuarial data with extreme observations. Inference procedures are discussed and applications to three well-known datasets are shown.

Funder

Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference35 articles.

1. Albrecher, Hansjörg, Beirlant, Jan, and Teugels, Jozef L. (2017). Reinsurance: Actuarial and Statistical Aspects, John Wiley & Sons.

2. Arnold, Barry (1983). Pareto Distributions, Taylor & Francis Group.

3. Infinite divisibility of the hyperbolic and generalised inverse gaussian distributions;Halgreen;Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,1977

4. Bingham, Nicholas, Goldie, Charles M., and Teugels, Jozef L. (1989). Regular Variation, Volume 27 of Encyclopedia of Mathematics and its Applications, Cambridge University Press.

5. Boland, Philip J. (2007). Statistical and Probabilistic Methods in Actuarial Science, Chapman & Hall.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3