Evaluation of Kinetic, Equilibrium and Thermodynamics of Cationic Ion Using Agro-Industrial Residues of Plantain (Musa paradisiaca)

Author:

Villabona-Ortíz AngelORCID,González-Delgado Ángel DaríoORCID,Tejada-Tovar CandelariaORCID

Abstract

This study aimed to evaluate the adsorptive capacity of Cr (VI) on the residues of the plantain starch extraction process in a batch system, determining the effect of temperature, initial concentration and adsorbent dose. The adsorbent was characterized by FTIR and SEM. The Cr (VI) solution was placed in contact with the adsorbent at pH 2 and 200 rpm. The results revealed the presence of COO−, OH− and CHx+ functional groups in the adsorbent. In addition, the adsorption process is controlled by chemisorption and electrostatic interactions. We also found that temperature and adsorbent dose are the variables with significant influence. The highest adsorption capacity was 64.46 mg/g at 55 °C, 200 mg/L and 0.14 g of biomaterial. Based on the kinetic behavior, it was found that the data are adjusted by the pseudo-second order, Elovich and intraparticle diffusion models. The fit of the isotherms to the Freundlich and Dubinin–Radushkevich models establishes that the limiting step of the process is the chemical reaction. The thermodynamic parameters determine that the process is endothermic, with strong biomass–metal bonds that are favorable and spontaneous as the temperature increases. The results indicate that the residual plantain pulp is a residue that can be used in the removal of Cr (VI) ions, and it contributes to the state of the art in terms of the use of new agro-industrial waste.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3