A Review of Prediction and Optimization for Sequence-Driven Scheduling in Job Shop Flexible Manufacturing Systems

Author:

Meilanitasari PritaORCID,Shin Seung-JunORCID

Abstract

This article reviews the state of the art of prediction and optimization for sequence-driven scheduling in job shop flexible manufacturing systems (JS-FMSs). The objectives of the article are to (1) analyze the literature related to algorithms for sequencing and scheduling, considering domain, method, objective, sequence type, and uncertainty; and to (2) examine current challenges and future directions to promote the feasibility and usability of the relevant research. Current challenges are summarized as follows: less consideration of uncertainty factors causes a gap between the reality and the derived schedules; the use of stationary dispatching rules is limited to reflect the dynamics and flexibility; production-level scheduling is restricted to increase responsiveness owing to product-level uncertainty; and optimization is more focused, while prediction is used mostly for verification and validation, although prediction-then-optimization is the standard stream in data analytics. In future research, the degree of uncertainty should be quantified and modeled explicitly; both holistic and granular algorithms should be considered; product sequences should be incorporated; and sequence learning should be applied to implement the prediction-then-optimization stream. This would enable us to derive data-learned prediction and optimization models that output accurate and precise schedules; foresee individual product locations; and respond rapidly to dynamic and frequent changes in JS-FMSs.

Funder

Hanyang University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference86 articles.

1. Flexible Manufacturing System in the International Academy for Product;ElMaraghy,2016

2. Flexible Manufacturing System;Shivanand,2006

3. GE Digitalhttps://www.ge.com/

4. Development of a business model for diagnosing uncertainty in ERP environments

5. A survey of priority rule-based scheduling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3