Characterizations of Polypropylene/Single-Walled Carbon Nanotube Nanocomposites Prepared by the Novel Melt Processing Technique with a Controlled Residence Time

Author:

Kang Dongho,Hwang SungwookORCID,Jung BichnamORCID,Shim Jinkie

Abstract

Melt processing is considered one of the favored techniques to produce polymer nanocomposites with various inorganic fillers such as graphene and carbon nanotubes (CNTs). Due to their superior conductivity and tensile properties, among others, CNTs have been applied in broad applications. When a low filler fraction is desired, a high degree of dispersion is required in order to benefit from the intrinsic properties of CNTs. However, due to their high cohesive energy, dispersing CNTs in polymer melts is a difficult task. This study employed the melt mixing technique with a controlled residence time of 20 min to disperse single-walled carbon nanotubes (SWNTs) into a polypropylene matrix. The composites were prepared by using a corotating twin-screw extruder equipped with a back-conveying element with varying amounts of SWNTs from 0.29 to 6.56 wt.%. Mechanical, electrical, morphological, and rheological properties were evaluated. Due to the filler effect, storage, loss modulus, and complex viscosity increased with the SWNT content. Based on the van Gurp–Palmen plot, 0.29 wt.% SWNTs was the rheological percolation threshold, and the electrical property measurement revealed a 1.4 wt.% SWNT electrical percolation threshold based on the statistical percolation theory. Relatively large agglomerates were found when the SWNT content increased more than 1.28 wt.%.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3