Biphasic Response of Astrocytic Brain-Derived Neurotrophic Factor Expression following Corticosterone Stimulation

Author:

Tsimpolis AlexandrosORCID,Kokkali Maria,Logothetis Aris,Kalafatakis Konstantinos,Charalampopoulos IoannisORCID

Abstract

Novel research studies indicate multivarious interactions of glucocorticoid hormones (GCs) with the brain-derived neurotrophic factor (BDNF), regulating important aspects of neuronal cell physiology. While there is recent evidence of the chronic effects of GC stimulation on BDNF levels, as well as of the role of BDNF stimulation in the type of genomic effects following activation of GC-sensitive receptors, no data exist concerning the acute effects of GC stimulation on BDNF/TrkB gene expression. To address this question, we conducted a chrono-pharmacological study on rodent glial cells, astrocytes, which express the BDNF receptor, TrkB, following corticosterone administration. mRNA levels of BDNF and TrkB were estimated 1, 6, 12 and 24 h post-treatment. Selective inhibitors for GC-sensitive receptors and TrkB were used to decipher the molecular pathways of the effects observed. Our data support a biphasic response of BDNF expression after corticosterone stimulation. This response is characterized by a rapid TrkB phosphorylation-dependent upregulation of BDNF mRNA within the first hour, followed by a glucocorticoid receptor (GR)-dependent downregulation of BDNF mRNA, evident at 6, 12 and 24 h, with a direct impact on the protein levels of mature BDNF. Finally, a second pulse of corticosterone administration 1 h prior to the 6, 12 or 24 h timepoints normalized BDNF expression for the corresponding timepoint (i.e., mRNA levels became indifferent from baseline). These results present for the first time a biphasic regulation of the neurotrophin system based on glucocorticoid rhythmicity, further indicating complex trophic responses to temporal hormonal mechanisms in the brain microenvironment.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3