Abstract
Novel research studies indicate multivarious interactions of glucocorticoid hormones (GCs) with the brain-derived neurotrophic factor (BDNF), regulating important aspects of neuronal cell physiology. While there is recent evidence of the chronic effects of GC stimulation on BDNF levels, as well as of the role of BDNF stimulation in the type of genomic effects following activation of GC-sensitive receptors, no data exist concerning the acute effects of GC stimulation on BDNF/TrkB gene expression. To address this question, we conducted a chrono-pharmacological study on rodent glial cells, astrocytes, which express the BDNF receptor, TrkB, following corticosterone administration. mRNA levels of BDNF and TrkB were estimated 1, 6, 12 and 24 h post-treatment. Selective inhibitors for GC-sensitive receptors and TrkB were used to decipher the molecular pathways of the effects observed. Our data support a biphasic response of BDNF expression after corticosterone stimulation. This response is characterized by a rapid TrkB phosphorylation-dependent upregulation of BDNF mRNA within the first hour, followed by a glucocorticoid receptor (GR)-dependent downregulation of BDNF mRNA, evident at 6, 12 and 24 h, with a direct impact on the protein levels of mature BDNF. Finally, a second pulse of corticosterone administration 1 h prior to the 6, 12 or 24 h timepoints normalized BDNF expression for the corresponding timepoint (i.e., mRNA levels became indifferent from baseline). These results present for the first time a biphasic regulation of the neurotrophin system based on glucocorticoid rhythmicity, further indicating complex trophic responses to temporal hormonal mechanisms in the brain microenvironment.
Subject
Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献