Fast Design Procedure for Turboexpanders in Pressure Energy Recovery Applications

Author:

Morgese GaetanoORCID,Fornarelli FrancescoORCID,Oresta Paolo,Capurso TommasoORCID,Stefanizzi MicheleORCID,Camporeale Sergio M.ORCID,Torresi MarcoORCID

Abstract

Sustainable development can no longer neglect the growth of those technologies that look at the recovery of any energy waste in industrial processes. For example, in almost every industrial plant it happens that pressure energy is wasted in throttling devices for pressure and flow control needs. Clearly, the recovery of this wasted energy can be considered as an opportunity to reach not only a higher plant energy efficiency, but also the reduction of the plant Operating Expenditures (OpEx). In recent years, it is getting common to replace throttling valves with turbine-based systems (tuboexpander) thus getting both the pressure control and the energy recovery, for instance, producing electricity. However, the wide range of possible operating conditions, technical requirements and design constrains determine highly customized constructions of these turboexpanders. Furthermore, manufacturers are interested in tools enabling them to rapidly get the design of their products. For these reasons, in this work we propose an optimization design procedure, which is able to rapidly come to the design of the turboexpander taking into account all the fluid dynamic and technical requirements, considering the already obtained achievements of the scientific community in terms of theory, experiments and numeric. In order to validate the proposed methodology, the case of a single stage axial impulse turbine is considered. However, the methodology extension to other turbomachines is straightforward. Specifically, the design requirements were expressed in terms of maximum allowable expansion ratio and flow coefficient, while achieving at least a minimum assigned value of the turbine loading factor. Actually, it is an iterative procedure, carried out up to convergence, made of the following steps: (i) the different loss coefficients in the turbine are set-up in order to estimate its main geometric parameters by means of a one dimensional (1D) study; (ii) the 2D blade profiles are designed by means of an optimization algorithm based on a “viscous/inviscid interaction” technique; (iii) 3D Computational Fluid Dynamic (CFD) simulations are then carried out and the loss coefficients are computed and updated. Regarding the CFD simulations, a preliminary model assessment has been performed against a reference case, chosen in the literature. The above-mentioned procedure is implemented in such a way to speed up the convergence, coupling analytical integral models of the 1D/2D approach with accurate local solutions of the finite-volume 3D approach. The method is shown to be able to achieve consistent results, allowing the determination of a turbine design respectful of the requirements more than doubling the minimum required loading factor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3