Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor

Author:

Yan Xiangwu,Sun Xuewei

Abstract

The large-scale application of wind power eases the shortage of conventional energy, but it also brings great hidden danger to the stability and security of the power grid because wind power has no ability for frequency regulation. When doubly-fed induction generator (DFIG) based wind turbines use rotor kinetic energy to participate in frequency regulation, it can effectively respond to frequency fluctuation, but has the problems of secondary frequency drop and output power loss. Furthermore, it cannot provide long-term power support. To solve these problems, a coordinated frequency control strategy based on rotor kinetic energy and supercapacitor was proposed in this paper. In order to ensure the DFIG provides fast and long-term power support, a supercapacitor was used to realize the droop characteristic, and rotor kinetic energy was used to realize the inertia characteristic like synchronous generator (SG). Additionally, the supercapacitor is also controlled to compensate for the power dip of the DFIG when rotor kinetic energy exits inertia support to avoid secondary frequency drop. Additionally, a new tracking curve of DFIG rotor speed and output power was adopted to reduce the power loss during rotor speed recovery.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Small‐signal stability of power system integrated with ancillary‐controlled large‐scale DFIG‐based wind farm

2. Nordel. Nordic Grid Code 2007 (Nordic Collection of Rules) [DB/EB]http://webhotel2.tut.fi/units/set/research/adine/materiaalit/Active%20network/System%20integration/GriG%20codes/Nordel%20grid%20code%202007-00129-01-E.pdf

3. Grid code requirements for wind energy facilities connected to distribution or transmission system in south Africa (version 4.4) [DB/EB]. 2012-07http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/TechnicalStandards/RSA%20Grid%20Code%20Connection%20Requirements%20for%20Wind%20Energy%20Facilitie.pdf

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3