Anaerobic-Based Water Resources Recovery Facilities: A Review

Author:

AlSayed Ahmed,Soliman Moomen,Eldyasti AhmedORCID

Abstract

The concept of water resources recovery facilities (WRRFs) has gained more attention as a more sustainable substitute for the conventional activated sludge-based wastewater treatment plant (CAS-WWTPs). Anaerobic treatment is advantageous due to its lower energy use, limited sludge production, and higher recovery of the soluble chemical oxygen demand (sCOD) from the received wastewater. In this article, a critical review of the proposed scheme for the anaerobic-based WRRF (An-WRRFs) is presented which is preceded with discussion of CAS-WWTPs limitations. In addition, the evolution of anaerobic treatment from being viewed as wastewater treatment plant (WWTP) to WRRF is demonstrated. It is attained that, even though anaerobic WWTPs (An-WWTPs) have simple and low energy mainline and very limited sludge handling process, its limited removal and recovery capacity have been widely reported, especially in cold weather. On the other hand, in the An-WRRF, higher energy expenditures are employed by using membranes, dissolved methane recovery unit, and primary treatment (extra sludge handling). Yet, energy recovery in the form of biogas is notably increased, as well as the removal efficiency under moderate residence times. The three key challenges to be overcome are the low value of biogas, reducing the energy use associated with membranes, and maintaining high performance in full-scale, especially in cold weather.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3