Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in a Stator Winding

Author:

Pietrowski WojciechORCID,Górny Konrad

Abstract

Despite the increasing popularity of permanent magnet synchronous machines, induction motors (IM) are still the most frequently used electrical machines in commercial applications. Ensuring a failure-free operation of IM motivates research aimed at the development of effective methods of monitoring and diagnostic of electrical machines. The presented paper deals with diagnostics of an IM with failure of an inter-turn short-circuit in a stator winding. As this type of failure commonly does not lead immediately to exclusion of a drive system, an early stage diagnosis of inter-turn short-circuit enables preventive maintenance and reduce the costs of a whole drive system failure. In the proposed approach, the early diagnostics of IM with the inter-turn short-circuit is based on the analysis of an electromagnetic torque waveform. The research is based on an elaborated numerical field–circuit model of IM. In the presented model, the inter-turn short-circuit in the selected winding has been accounted for. As the short-circuit between the turns can occur in different locations in coils of winding, computations were carried out for various quantity of shorted turns in the winding. The performed analysis of impact of inter-turn short-circuit on torque waveforms allowed to find the correlation between the quantity of shorted turns and torque ripple level. This correlation can be used as input into the first layer of an artificial neural network in early and noninvasive diagnostics of drive systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3