Optimal Sizing of a Real Remote Japanese Microgrid with Sea Water Electrolysis Plant Under Time-Based Demand Response Programs

Author:

Gamil Mahmoud M.ORCID,Sugimura Makoto,Nakadomari AkitoORCID,Senjyu TomonobuORCID,Howlader Harun Or Rashid,Takahashi Hiroshi,Hemeida Ashraf M.ORCID

Abstract

Optimal sizing of power systems has a tremendous effective role in reducing the total system cost by preventing unneeded investment in installing unnecessary generating units. This paper presents an optimal sizing and planning strategy for a completely hybrid renewable energy power system in a remote Japanese island, which is composed of photovoltaic (PV), wind generators (WG), battery energy storage system (BESS), fuel cell (FC), seawater electrolysis plant, and hydrogen tank. Demand response programs are applied to overcome the performance variance of renewable energy systems (RESs) as they offer an efficient solution for many problems such as generation cost, high demand peak to average ratios, and assist grid reliability during peak load periods. Real-Time Pricing (RTP), which is deployed in this work, is one of the main price-based demand response groups used to regulate electricity consumption of consumers. Four case studies are considered to confirm the robustness and effectiveness of the proposed schemes. Mixed-Integer Linear Programming (MILP) is utilized to optimize the size of the system’s components to decrease the total system cost and maximize the profits at the same time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3