Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization

Author:

Li Penglu,Fan Zheng,Duan Xiaoya,Cui Danfeng,Zang Junbin,Zhang Zengxing,Xue Chenyang

Abstract

Ultrasound is widely used in industry and the agricultural, biomedical, military, and other fields. As key components in ultrasonic applications, the characteristic parameters of ultrasonic transducers fundamentally determine the performance of ultrasonic systems. High-frequency ultrasonic transducers are small in size and require high precision, which puts forward higher requirements for sensor design, material selection, and processing methods. In this paper, a three-dimensional model of a high-frequency piezoelectric micromachined ultrasonic transducer (PMUT) is established based on the finite element method (FEM). This 3D model consists of a substrate, a silicon device layer, and a molybdenum-aluminum nitride-molybdenum (Mo-AlN-Mo) sandwich piezoelectric layer. The effect of the shape of the transducer’s vibrating membrane on the transmission performance was studied. Through a discussion of the parametric scanning of the key dimensions of the diaphragms of the three structures, it was concluded that the fundamental resonance frequency of the hexagonal diaphragm was higher than that of the circle and the square under the same size. Compared with the circular diaphragm, the sensitivity of the square diaphragm increased by 8.5%, and the sensitivity of the hexagonal diaphragm increased by 10.7%. The maximum emission sound-pressure level of the hexagonal diaphragm was 6.6 times higher than that of the circular diaphragm. The finite element results show that the hexagonal diaphragm design has great advantages for improving the transmission performance of the high-frequency PMUT.

Funder

the National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3