Fuzzy Logic and Genetic-Based Algorithm for a Servo Control System

Author:

Torres-Salinas Hugo1ORCID,Rodríguez-Reséndiz Juvenal2ORCID,Cruz-Miguel Edson3ORCID,Ángeles-Hurtado L.2ORCID

Affiliation:

1. Facultad de Informática, Universidad Autonóma de Querétaro, Querétaro 76230, Mexico

2. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico

3. Facultad de Ingeniería en Electrónica y Comunicaciones, Universidad Veracruzana, Veracruz 91090, Mexico

Abstract

Performing control is necessary for processes where a variable needs to be regulated. Even though conventional techniques are widely preferred for their implementation, they present limitations in systems in which the parameters vary over time, which is why methods that use artificial intelligence algorithms have been developed to improve the results given by the controller. This work focuses on implementing a position controller based on fuzzy logic in a real platform that consists of the base of a 3D printer, the direct current motor that modifies the position in this base, the power stage and the acquisition card. The contribution of this work is the use of genetic algorithms to optimize the values of the membership functions in the fuzzification of the input variables to the controller. Four scenarios were analyzed, in which the trajectory and the weight of the system were modified. The results obtained in the experimentation show that the rising and setting times of the proposed controller are better than those obtained by similar techniques that were previously developed in the literature. It was also verified that the proposed technique reached the desired values even when the initial conditions in the system changed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3