Abstract
The current work introduced a convenient single-phase hydrothermal protocol to fabricate MnO2 nanorods (MnO2 NRs). Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscopy (FE-SEM) were used to determine the characteristics of MnO2 NR. Then, ionic liquid (IL) and MnO2 NRs were utilized to modify a carbon paste electrode (CPE) surface (MnO2NR-IL/CPE) to voltammetrically sense the sulfanilamide (SAA). An enhanced voltammetric sensitivity was found for the as-developed modified electrode toward SAA when compared with a bare electrode. The optimization experiments were designed to achieve the best analytical behavior of the SAA sensor. Differential pulse voltammetry (DPV) in the optimized circumstances portrayed a linear dependence on various SAA levels (between 0.07 and 100.0 μM), possessing a narrow detection limit (0.01 μM). The ability of the modified electrode to be used in sensor applications was verified in the determination of SAA present in the actual urine and water specimens, with impressive recovery outcomes.
Funder
Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献