The Influence of Photoperiod, Intake of Polyunsaturated Fatty Acids, and Food Availability on Seasonal Acclimatization in Red Deer (Cervus elaphus)

Author:

Gasch Kristina1,Habe Manuela1ORCID,Krauss Julie Sophie1,Painer-Gigler Johanna1,Stalder Gabrielle1,Arnold Walter1ORCID

Affiliation:

1. Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria

Abstract

Hypometabolism and hypothermia are common reactions of birds and mammals to cope with harsh winter conditions. In small mammals, the occurrence of hibernation and daily torpor is entrained by photoperiod, and the magnitude of hypometabolism and decrease of body temperature (Tb) is influenced by the dietary supply of essential polyunsaturated fatty acids. We investigated whether similar effects exist in a non-hibernating large mammal, the red deer (Cervus elaphus). We fed adult females with pellets enriched with either linoleic acid (LA) or α-linolenic acid (ALA) during alternating periods of ad libitum and restricted feeding in a cross-over experimental design. Further, we scrutinized the role of photoperiod for physiological and behavioral seasonal changes by manipulating the amount of circulating melatonin. The deer were equipped with data loggers recording heart rate, core and peripheral Tb, and locomotor activity. Further, we regularly weighed the animals and measured their daily intake of food pellets. All physiological and behavioral parameters measured varied seasonally, with amplitudes exacerbated by restricted feeding, but with only few and inconsistent effects of supplementation with LA or ALA. Administering melatonin around the summer solstice caused a change into the winter phenotype weeks ahead of time in all traits measured. We conclude that red deer reduce energy expenditure for thermoregulation upon short daylength, a reaction amplified by food restriction.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3