Histopathological Study on Collagen in Full-Thickness Wound Healing in Fraser’s Dolphins (Lagenodelphis hosei)

Author:

Su Chen-Yi1,Liu Tzu-Yu23,Wang Hao-Ven234,Yang Wei-Cheng1

Affiliation:

1. School of Veterinary Medicine, National Taiwan University, Taipei 106216, Taiwan

2. Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan

3. Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan 701, Taiwan

4. Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan

Abstract

Fraser’s dolphins (Lagenodelphis hosei) possess great healing abilities. Their skin composition can be restored after wounding, including collagen spacing, orientation, and bundle thickness. However, it remains unclear how collagens are involved in the wound-healing process and eventually regain normality in Fraser’s dolphins. Learned from the other two scarless healing animals, changes in type III/I collagen composition are believed to modulate the wound healing process and influence the scarring or scarless fate determination in human fetal skin and spiny mouse skin. In the current study, Herovici’s, trichrome, and immunofluorescence staining were used on normal and wounded skin samples in Fraser’s dolphins. The results suggested that type I collagens were the main type of collagens in the normal skin of Fraser’s dolphins, while type III collagens were barely seen. During the wound healing process, type III collagens showed at early wound healing stages, and type I collagen increased in the mature healed wound. In an early healed wound, collagens were organized in a parallel manner, showing a transient hypertrophic-like scar, and eventually restored to normal collagen configuration and adipocyte distribution in the mature healed wound. The remarkable ability to remove excessive collagens merits further investigation to provide new insights into clinical wound management.

Funder

National Science and Technology Council, Taiwan

National Taiwan University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3