Abstract
This article describes the results of the retrospective numerical simulation of wind waves in the Sea of Azov using the SWAN spectral wave model and the ERA-Interim global reanalysis for 1979–2019. A digital model of the sea-floor relief of the Sea of Azov was used for the calculations. This model was built using a bathymetric map of the Sea of Azov, as well as nautical charts and remote sensing data. Verification of the model for the conditions that characterize the Sea of Azov was conducted using data from ship observations of wind waves. The features of the mean long-term wind wave patterns, as well as the seasonal, interannual, and interdecadal dynamics were presented. The main focus was on the following parameters: significant wave height, wave period, and wave direction. A description of storm conditions and a comparison with surge phenomena and ice conditions was also completed. The results indicated that, in contrast to Taganrog Bay, the wave patterns were heavily influenced according to the time of year (i.e., the seasons). The maximum wave heights were typical for the cold season of the year but not for the ice-free period. The interannual dynamics of wind waves were characterized by the alternation of three five-year periods of strengthening and weakening of wind waves. After 2002, the wave height increased in the summer and autumn seasons and slightly decreased in winter and spring. A shift of the storm season to a warmer period was also detected.
Funder
Russian Science Foundation
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献