Sampling Based on Kalman Filter for Shape from Focus in the Presence of Noise

Author:

Jang Hoon-SeokORCID,Muhammad Mannan SaeedORCID,Yun GuhnooORCID,Kim Dong HwanORCID

Abstract

Recovering three-dimensional (3D) shape of an object from two-dimensional (2D) information is one of the major domains of computer vision applications. Shape from Focus (SFF) is a passive optical technique that reconstructs 3D shape of an object using 2D images with different focus settings. When a 2D image sequence is obtained with constant step size in SFF, mechanical vibrations, referred as jitter noise, occur in each step. Since the jitter noise changes the focus values of 2D images, it causes erroneous recovery of 3D shape. In this paper, a new filtering method for estimating optimal image positions is proposed. First, jitter noise is modeled as Gaussian or speckle function, secondly, the focus curves acquired by one of the focus measure operators are modeled as a quadratic function for application of the filter. Finally, Kalman filter as the proposed method is designed and applied for removing jitter noise. The proposed method is experimented by using image sequences of synthetic and real objects. The performance is evaluated through various metrics to show the effectiveness of the proposed method in terms of reconstruction accuracy and computational complexity. Root Mean Square Error (RMSE), correlation, Peak Signal-to-Noise Ratio (PSNR), and computational time of the proposed method are improved on average by about 48%, 11%, 15%, and 5691%, respectively, compared with conventional filtering methods.

Funder

Korea Institute of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3