TF-YOLO: An Improved Incremental Network for Real-Time Object Detection

Author:

He ,Huang ,Wei ,Li ,Guo

Abstract

In recent years, significant advances have been gained in visual detection, and an abundance of outstanding models have been proposed. However, state-of-the-art object detection networks have some inefficiencies in detecting small targets. They commonly fail to run on portable devices or embedded systems due to their high complexity. In this workpaper, a real-time object detection model, termed as Tiny Fast You Only Look Once (TF-YOLO), is developed to implement in an embedded system. Firstly, the k-means++ algorithm is applied to cluster the dataset, which contributes to more excellent priori boxes of the targets. Secondly, inspired by the multi-scale prediction idea in the Feature Pyramid Networks (FPN) algorithm, the framework in YOLOv3 is effectively improved and optimized, by three scales to detect the earlier extracted features. In this way, the modified network is sensitive for small targets. Experimental results demonstrate that the proposed TF-YOLO method is a smaller, faster and more efficient network model increasing the performance of end-to-end training and real-time object detection for a variety of devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spiking-Hybrid-YOLO for Low-Latency Object Detection;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

2. YOLO_Bolt: a lightweight network model for bolt detection;Scientific Reports;2024-01-05

3. Deep learning applied solid waste recognition system targeting sustainable development goal;Machine Intelligence in Mechanical Engineering;2024

4. Quantization Effects on a Convolutional Layer of a Deep Neural Network;Proceedings of Congress on Control, Robotics, and Mechatronics;2023-11-10

5. An improved YOLOv5 method for clam seedlings biological feature detection under the microscope;Computers and Electronics in Agriculture;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3