Aspect-Based Sentiment Analysis Using Aspect Map

Author:

Noh Yunseok,Park Seyoung,Park Seong-Bae

Abstract

Aspect-based sentiment analysis (ABSA) is the task of classifying the sentiment of a specific aspect in a text. Because a single text usually has multiple aspects which are expressed independently, ABSA is a crucial task for in-depth opinion mining. A key point of solving ABSA is to align sentiment expressions with their proper target aspect in a text. Thus, many recent neural models have applied attention mechanisms to learning the alignment. However, it is problematic to depend solely on attention mechanisms to achieve this, because most sentiment expressions such as “nice” and “bad” are too general to be aligned with a proper aspect even through an attention mechanism. To solve this problem, this paper proposes a novel convolutional neural network (CNN)-based aspect-level sentiment classification model, which consists of two CNNs. Because sentiment expressions relevant to an aspect usually appear near the aspect expressions of the aspect, the proposed model first finds the aspect expressions for a given aspect and then focuses on the sentiment expressions around the aspect expressions to determine the final sentiment of an aspect. Thus, the first CNN extracts the positional information of aspect expressions for a target aspect and expresses the information as an aspect map. Even if there exist no data with annotations on direct relation between aspects and their expressions, the aspect map can be obtained effectively by learning it in a weakly supervised manner. Then, the second CNN classifies the sentiment of the target aspect in a text using the aspect map. The proposed model is evaluated on SemEval 2016 Task 5 dataset and is compared with several baseline models. According to the experimental results, the proposed model does not only outperform the baseline models but also shows state-of-the-art performance for the dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. On text preprocessing for opinion mining outside of laboratory environments;Petz,2012

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Intensified Approach on Aspect Based Sentiment Analysis Using Pre-Trained Deep Learning Model;2024 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI);2024-04-17

2. Hyperparameter Optimization of Machine Learning Models Using Grid Search for Amazon Review Sentiment Analysis;Lecture Notes in Networks and Systems;2024

3. Assessing coastal vulnerability and land use to sea level rise in Jeddah province, Kingdom of Saudi Arabia;Heliyon;2023-08

4. A Self-Attention-Based Multi-Level Fusion Network for Aspect Category Sentiment Analysis;Cognitive Computation;2023-06-24

5. A Study of Collocations in Sentiment Analysis;2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3