Seismic Damage Analysis of Box Metro Tunnels Accounting for Aspect Ratio and Shear Failure

Author:

Nguyen Duy-DuanORCID,Lee Tae-HyungORCID,Nguyen Van-Quang,Park DuheeORCID

Abstract

We performed a series of inelastic frame analyses for single, double, and triple reinforced concrete box tunnels to investigate their unique damage mechanisms. We focused our interest on the influence of the aspect ratio of box tunnels and the occurrence of a shear structural failure. This is a follow-up study of Lee et al. (2016), where damage analyses of box tunnels with an aspect ratio of unity were performed by considering only the flexural failure. We show that only flexural failures occurred in single box tunnels, whereas shear structural failures were produced at the inner column for double and triple box tunnels. The inner column failed in shear after flexural plastic hinges were formed at all four outer corners, and might cause a brittle collapse. A structural collapse was not observed in single box tunnels. An increase in the aspect ratio was demonstrated to cause associated increment in the seismic resistance. The moment and shear strains at which plastic hinges formed an increase by up to 5% and 20%, respectively. We proposed revised damage indices (DIs) corresponding to three damage states for single box tunnels, where DI is defined as the ratio of the elastic moment to the yield moment. The collapse damage state and corresponding DI for double and triple tunnels are newly presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Seismic design and analysis of underground structures

2. A Review of Seismic Damage of Mountain Tunnels and Probable Failure Mechanisms

3. Damage to rock tunnels from earthquake shaking;Dowding;J. Soil Mech. Found. Div.,1978

4. Earthquake Engineering of Large Underground Structures;Owen,1981

5. Underground opening damage from earthquakes

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3