Abstract
Solar power generation deals with uncertainty and intermittency issues that lead to some difficulties in controlling the whole grid system due to imbalanced power production and power demand. The forecasting of solar power is an effort in securing the integration of renewable energy into the grid. This work proposes a forecasting model called WT-ANFIS-HFPSO which combines the wavelet transform (WT), adaptive neuro-fuzzy inference system (ANFIS) and hybrid firefly and particle swarm optimization algorithm (HFPSO). In the proposed work, the WT model is used to eliminate the noise in the meteorological data and solar power data whereby the ANFIS is functioning as the forecasting model of the hourly solar power data. The HFPSO is the hybridization of the firefly (FF) and particle swarm optimization (PSO) algorithm, which is employed in optimizing the premise parameters of the ANFIS to increase the accuracy of the model. The results obtained from WT-ANFIS-HFPSO are then compared with several other forecasting strategies. From the comparative analysis, the WT-ANFIS-HFPSO showed superior performance in terms of statistical error analysis, confirming its reliability as an excellent forecaster of hourly solar power data.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献