Particle Swarm Optimization Algorithm-Extreme Learning Machine (PSO-ELM) Model for Predicting Resilient Modulus of Stabilized Aggregate Bases

Author:

Kaloop Mosbeh R.,Kumar DeepakORCID,Samui Pijush,Gabr Alaa R.ORCID,Hu Jong WanORCID,Jin Xinghan,Roy Bishwajit

Abstract

Stabilized base/subbase materials provide more structural support and durability to both flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized base/subbase layers in flexible pavements, good performance in terms of resilient modulus (Mr) under wet-dry cycle conditions is required. This study focuses on the development of a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (r2) compared with the other two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted Mr values generally yielded the same distribution and trend as the observed Mr data.

Funder

Ministry of Science, ICT and Future Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3