Abstract
Stabilized base/subbase materials provide more structural support and durability to both flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized base/subbase layers in flexible pavements, good performance in terms of resilient modulus (Mr) under wet-dry cycle conditions is required. This study focuses on the development of a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (r2) compared with the other two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted Mr values generally yielded the same distribution and trend as the observed Mr data.
Funder
Ministry of Science, ICT and Future Planning
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献