Mechanical Behavior of Low-Density Polyethylene Waste Modified Hot Mix Asphalt

Author:

Rincón-Estepa Jessica Adaluz,González-Salcedo Esthefanny Victoria,Rondón-Quintana Hugo AlexanderORCID,Reyes-Lizcano Fredy Alberto,Bastidas-Martínez Juan Gabriel

Abstract

The use of polymeric waste in the modification of asphalt binders for the construction of road pavements is a technique studied several years ago. However, the use of these materials involves high temperatures close to 190 °C, which generate large environmental impacts due to their emissions. In this study, an asphalt cement (AC) with low-density polyethylene (LDPE) residue contents of 5%, 7%, and 10% with respect to the mass of the AC was modified by the wet method. The modification was carried out using a temperature of 150 °C with the aim of preventing the oxidation of the AC and reducing the emissions generated at high temperatures. Based on the physical-rheological properties of the modified asphalt binder, it was found that 5% LDPE produces the best performance. Subsequently, a hot-mix asphalt type HMA-19 control without a modified asphalt binder and another with a modified asphalt binder were manufactured in order to evaluate the mechanical behavior by means of the Marshall test, an indirect tensile strength (ITS) test, resilient modulus (RM) testing, resistance to fatigue testing, permanent deformation testing, and the Cantabro test. Additionally, the asphalt mixtures were tested under the conditions of short-term aging (STOA, Short-Term Oven Aging), long-term aging (STOA + LTOA, Long-Term Oven Aging), and partial saturation with water (STOA + LTOA + water). Based on the results, an ANOVA analysis of variance was performed to assess whether the changes in the mechanical response of the modified mixture are statistically significant with respect to the control mixture. As a general conclusion, it is reported that mixtures with LDPE can be used for thick layers in high-temperature climates in order to control rutting.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3