A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression

Author:

Hameed Siddik ShakulORCID,Ramadoss Ramesh,Raju KannadasanORCID,Shafiullah GMORCID

Abstract

Wind energy is one of the most promising alternates of fossil fuels because of its abundant availability, low cost, and pollution-free attributes. Wind potential estimation, wind forecasting, and effective wind-energy management are the critical factors in planning and managing wind farms connected to wind-pooling substations. Hence, this study proposes a hybrid framework-based approach for wind-resource estimation and forecasting, namely IGWO-SVR (improved grey wolf optimization method (IGWO)-support vector regression (SVR)) for a real-time power pooling substation. The wind resource assessment and behavioral wind analysis has been carried out with the proposed IGWO-SVR optimization method for hourly, daily, monthly, and annual cases using 40 years of ERA (European Center for Medium-Range Weather Forecast reanalysis) data along with the impact of the El Niño effect. First, wind reassessment is carried out considering the impact of El Niño, wind speed, power, pressure, and temperature of the selected site Radhapuram substation in Tamilnadu, India and reported extensively. In addition, statistical analysis and wind distribution fitting are performed to demonstrate the seasonal effect. Then the proposed model is adopted for wind speed forecasting based on the dataset. From the results, the proposed model offered the best assessment report and predicted the wind behavior with greater accuracy using evaluation metrics, namely root mean square error (RMSE), mean absolute error (MAE), and mean squared error (MSE). For short-term wind speed, power, and El Niño forecasting, IGWO-SVR optimization effectively outperforms other existing models. This method can be adapted effectively in any potential locations for wind resource assessment and forecasting needs for better renewable energy management by power utilities.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3