Innovative Bacterial Removal Technique Using Green Synthetic Nano Curcumin Zinc (II) Complex for Sustainable Water Resource Management

Author:

Samayamanthula Dhanu RadhaORCID,Alhalaili Badriyah,Yapati Harinath,Akber Adnan,Sabarathinam ChidambaramORCID

Abstract

Sustainable management of water resources is a daunting challenge, especially with respect to microbes. This study primarily focused on the development of a novel application for the removal of specific bacterial groups in different water types using a green synthetic nano Cur-Zn(II) complex. The results of UV and FT-IR spectroscopic techniques suggested the formation of a chelation complex. Proton NMR showed that the main enolic proton peak with a chemical shift of 16.45 nm identified in curcumin was missed, indicating the contribution of carbonyl oxygen of enol in the formation of the complex. The crystalline nature of the complex and Wurtzite structure of annealed products was inferred from the XRD analysis data. SEM results confirmed the complex’s morphology as spherical and clustered with a rough surface, having an average particle size of 68.2 nm. In addition, the complex was observed to be stable up to 300 °C without any decomposition from STA. Being acidic in nature with a pH of 5.36, the complex penetrates into the cell membrane and inhibit microbial growth. Intrinsically, no studies have been reported for the removal of microbes from water using natural materials embedded with inorganic metals, particularly in nano form. Therefore, the study is the first, innovative, eco-friendly, and economical method to use nano Cur-Zn(II) for removing targeted bacteria in real water samples with 100% efficiency by using optimized amounts (0.025–0.2 g/L) of the complex at a contact time interval between 4 and 24 h. The complex developed is toxic-free and can be applied in situ.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3