Experimental Investigation and Modelling of Sediments Effect on the Performance of Cadmium Telluride Photovoltaic Panels

Author:

Gonçalves Bernardo1ORCID,Fernandes João F. P.12ORCID,Torres João Paulo N.34ORCID,Marques Lameirinhas Ricardo A.13ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Instituto Superior Técnico, 1049-001 Lisbon, Portugal

2. IDMEC-Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal

3. Instituto de Telecomunicações, 1049-001 Lisbon, Portugal

4. Academia Militar/CINAMIL, Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal

Abstract

Of the different renewable sources of energy, photovoltaic energy has one of the highest potentials. In recent decades, several technological and research advances have contributed to the consolidation of its potential. One current photovoltaic energy research topic is the analysis of the impact of sediments on the panels’ performance. The development of models to predict the performance of panels in the presence of sediments may allow for better decision-making when considering maintenance operations. This work contributed to the investigation of the influence of sand on the production of photovoltaic energy in cadmium telluride (CdTe) panels. Six panels of this type with different colors and transparencies were experimentally tested with and without the presence of sand. The impact of the sand on the cells’ performance was evaluated by analyzing the change in the 1M5P model’s parameters and in the power, efficiency, and fill factors. The experimental results show different negative impacts on the output power of the CdTe panels, from −14% in the orange panel to −36% in the green panel. Based on this study, the development of a model capable of predicting the effect of the sand on these panels was introduced. The developed model was validated experimentally, with a maximum deviation of 4.6%. These results can provide support for the decision-making around maintenance activities and for the development of new techniques to avoid sediment deposition on CdTe panels.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3