Affiliation:
1. Gansu Institute of Architectural Design and Research Co., Ltd., Lanzhou 730000, China
2. School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
Abstract
The issue of freezing often occurs when using all-glass vacuum tube solar water heaters during cold winter seasons, leading to problems such as pipe ruptures and tank leakage. In order to further study the nocturnal heat dissipation and freezing characteristics of these heaters, a three-dimensional transient numerical model of their nocturnal heat dissipation was established. The model simulated the nocturnal heat dissipation process, and experimental validations were conducted through nocturnal temperature drops of the collector and temperature drops of individual tubes without a storage tank. Experimental and simulation results revealed that in clear weather conditions during cold winters in Luoyang, the all-glass vacuum tube solar water heaters experienced freezing issues during the night, with freezing predominantly starting from the bottom surface of the vacuum tubes. The frozen length along the tube wall and the thickness of ice at the bottom section reached up to 1180 mm and 5 mm, respectively. In the absence of a storage tank, the freezing situation was severe, with approximately 4/5 of the individual tubes completely frozen. Under specified operating conditions, different storage tank volumes exhibited varying degrees of freezing in the all-glass vacuum tube solar water heaters. When the volume was increased to 15 L, the temperature drop in the storage tank and the vacuum tubes decreased by 12.1% and 7.6%, respectively. Larger storage tank volumes resulted in reduced freezing risks in all-glass vacuum tube solar collectors. This study provides valuable guidance for the design and application of solar collectors and serves as a reference for the development and application of solar energy utilization technologies.
Funder
the Opening Fund of the State Key Laboratory of Green Building in Western China
the Young Talents Project of Science and Technology Research Program of Hubei Education Department
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献