Analysis of the Effects of Different Nanofluids on Critical Heat Flux Using Artificial Intelligence

Author:

Serrao Bruno Pinheiro1,Kim Kyung Mo2ORCID,Duarte Juliana Pacheco1ORCID

Affiliation:

1. Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Dr, Madison, WI 53711, USA

2. Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Kentech-gil 21, Naju-si 58330, Jeollanam-do, Republic of Korea

Abstract

Nanofluid (NF) pool boiling experiments have been conducted widely in the past two decades to study and understand how nanoparticles (NP) affect boiling heat transfer and critical heat flux (CHF). However, the physical mechanisms related to the improvements in CHF in NF pool boiling are still not conclusive due to the coupling effects of the surface characteristics and the complexity of the experimental data. In addition, the current models for pool boiling CHF prediction, which consider surface microstructure characteristics, show limited agreement with the experimental data and do not represent NF pool boiling CHF. In this scenario, artificial intelligence tools, such as machine learning (ML) regressor models, are a very promising means of solving this nonlinear problem. This study focuses on creating a new model to provide more accurate NF pool boiling CHF predictions based on pressure, substrate thermal effusivity, and NP size, concentration, and effusivity. Three ML models (supporting vector regressor—SVR, multi-layer perceptron—MLP, and random forest—RF) were constructed and showed good agreement with an experimental database built from the literature, with MLP presenting the highest mean R2 score and the lowest variability. A systematic methodology for optimizing the ML models is proposed in this work.

Funder

4-VA Collaborative Research Award 2022

KENTECH Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3