Optimal Control Method of Oil Well Production Based on Cropped Well Group Samples and Machine Learning

Author:

Wang Xiang1,Ding Yangyang1,Li Ding1,He Yanfeng1

Affiliation:

1. School of Petroleum and Natural Gas Engineering, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou 213164, China

Abstract

Most traditional injection-production optimization methods that treat the entire oil reservoir as a whole require re-optimization when facing new reservoirs, which is not only time-consuming but also does not make full use of historical experience information. This study decomposes the reservoir into independent basic production units to increase sample size and diversity and utilizes image enhancement techniques to augment the number of samples. Two frameworks based on convolutional neural networks (CNNs) are employed to recommend optimal control strategies for inputted well groups. Framework 1 uses bottom hole pressure (BHP) as a control variable and trains a CNN with optimal BHP obtained by reinforcement learning algorithms as labels. Framework 2 saves BHP and corresponding oil well revenue (NPV) during reinforcement learning optimization and trains a CNN with well groups and BHP as features and NPV as labels. The CNN in this framework is capable of directly outputting the NPV according to control strategies. The particle swarm algorithm (PSO) is used to generate control strategies and call CNN to predict development effects until PSO converges to the optimal production strategy. The experimental results demonstrate that the CNN-based frameworks outperform the traditional PSO-based methods in terms of accuracy and computational efficiency. Framework 1 achieves an output accuracy of 87% for predicting the optimal BHP for new well groups, while Framework 2 achieves an accuracy of 78%. Both frameworks exhibit fast running times, with each iteration taking less than 1 s. This study provides a more effective and accurate method for optimizing oil well production in oil reservoirs by decomposing oil reservoirs into independent units and using CNN to construct an algorithm framework, which is of great significance for the real-time optimization and control of oil wells in oil fields.

Funder

Sinopec Scientific and Technological Research Project "Research on the Application of Big Data Technology in Oilfield Development"

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. A Physics-Based Data-Driven Numerical Model for Reservoir History Matching and Prediction with a Field Application;Zhao;SPE J.,2016

2. A Stochastic Simplex Approximate Gradient (StoSAG) for optimization under uncertainty;Fonseca;Int. J. Numer. Methods Eng.,2017

3. A Sequential-Quadratic-Programming-Filter Algorithm with a Modified Stochastic Gradient for Robust Life-Cycle Optimization Problems with Nonlinear State Constraints;Liu;SPE J.,2020

4. Production Optimization with Adjoint Models under Nonlinear Control-State Path Inequality Constraints;Sarma;SPE Reserv. Eval. Eng.,2008

5. Wang, P., Litvak, M., and Aziz, K. (October, January 29). Optimization of Production Operations in Petroleum Fields. Proceedings of the SPE Annual Technical Conference and Exhibition, Antonio, TX, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3