Abstract
Using numerically exact solution of the time-dependent Schrödinger equation together with time-dependent quantum Monte Carlo (TDQMC) calculations, here we compare the effects of spatial nonlocality versus nonlocal causality for the ground state and for real-time evolution of two entangled electrons in parabolic potential in one spatial dimension. It was found that the spatial entanglement quantified by the linear quantum entropy is predicted with good accuracy using the spatial nonlocality, parameterized naturally within the TDQMC approach. At the same time, the nonlocal causality predicted by the exact solution leads to only small oscillations in the quantum trajectories which belong to the idler electron as the driven electron is subjected to a strong high frequency electric field, without interaction between the electrons.
Funder
United States Air Force Office of Scientific Research
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献