Author:
Zhang Shicheng,Zhang Laixian,Sun Huayan,Guo Huichao
Abstract
This paper proposes a photoelectric target detection algorithm for NVIDIA Jeston Nano embedded devices, exploiting the characteristics of active and passive differential images of lasers after denoising. An adaptive threshold segmentation method was developed based on the statistical characteristics of photoelectric target echo light intensity, which effectively improves detection of the target area. The proposed method’s effectiveness is compared and analyzed against a typical lightweight network that was knowledge-distilled by ResNet18 on target region detection tasks. Furthermore, TensorRT technology was applied to accelerate inference and deploy on hardware platforms the lightweight network Shuffv2_x0_5. The experimental results demonstrate that the developed method’s accuracy rate reaches 97.15%, the false alarm rate is 4.87%, and the detection rate can reach 29 frames per second for an image resolution of 640 × 480 pixels.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献