Characterization of Microstructure of Crept Nb and Ta-Rich γ-TiAl Alloys by Automated Crystal Orientation Mapping and Electron Back Scatter Diffraction

Author:

Singh Vajinder,Mondal Chandan,Sarkar Rajdeep,Roy Satabdi,Omprakash Chiptalluri Mohan,Ghosal Partha

Abstract

Understanding of the creep behavior Nb and Ta-rich γ-TiAl alloys plays a crucial role towards realization of their potential applications. The present article reports the evolution of microstructural features in the crept γ-TiAl-based Ti-5Al-8Nb-2Cr-0.2B and Ti-45Al-8Ta-0.2C-0.2B-0.2C alloys. Structural characterizations have been carried out using automated crystal orientation mapping (ACOM) along with precession electron diffraction (PED) in a transmission electron microscope, in conjunction with electron back-scattered diffraction (EBSD) in a scanning electron microscope (SEM) and transmission electron microscopy (TEM). Creep behavior of the fourth generation γ-TiAl-based alloys has been comparatively investigated under constant load tensile creep tests performed in the temperature range from 800–850 °C and applied stresses range of 125–200 MPa. It has been demonstrated that the ACOM with PED technique has accurate and reliable diffraction pattern recognition and higher spatial resolution, and supplements effectively the conventional EBSD technique for characterization of complex microstructural features evolved during creep of multiphase (γ + α2 + β)-based TiAl alloys. The results show that the Nb and Ta additions have distinctly different effects on the microstructural instability and phase transformation during the creep deformation. The formation of the Ta-rich intermetallic phase (Ti4Al3Ta, the so-called τ phase) has been detected preferentially along the colony and the γ-α2 interphase boundaries in the Ta-rich alloy, whilst its isomorph, Ti4Al3Nb intermetallic, has hardly been detected in the Nb-rich alloy. Implications of τ-phase formation and related microstructural instabilities have been discussed with respect to the creep behavior of the two alloys.

Funder

Defence Research and Development Organisation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3