Dual Hashing Index Cancellable Finger Vein Template Based on Gaussian Random Mapping

Author:

Hu Xueyou,Zhang Liping,Wang Huabin,Zhou Jian,Tao Liang

Abstract

In the existing cancellable finger vein template protection schemes, the original biometric features cannot be well protected, which results in poor security. In addition, the performance of matching recognition performances after generating a cancellable template is poor. Therefore, a dual hashing index cancellable finger vein template protection based on Gaussian random mapping is proposed in this study. The scheme is divided into an enrollment stage and a verification stage. In the two stages, symmetric data encryption technology was used to generate encryption templates for matching. In the enrollment stage, first, the extracted finger vein features were duplicated to obtain an extended feature vector; then, this extended vector was uniformly and randomly permuted to obtain a permutation feature vector. The above two vectors were combined into a two-dimensional feature matrix. The extended and permuted feature vector made full use of the original biometric features and further enhanced the non-invertibility. Second, a random Gaussian projection vector with m×q dimensions was generated, and a random orthogonal projection matrix was generated by the Schmidt orthogonalization of the previously generated random vector. This approach accurately transferred the characteristics of the biometric features to another feature space and ensured that the biological template is revocable. Finally, the inner product of the two-dimensional feature vector and random orthogonal projection matrix was obtained and superimposed into a row. The dual index values of the largest and second largest values were repeated m times to obtain a hash code for matching. The secondary maximum value index was introduced to adjust the error generated by the random matrix, which improved the recognition rate of the algorithm. In the verification stage, another hash code for matching was generated based on symmetric data encryption technology, and then the two hash codes were cross matched to obtain the final matching result. The experimental results show that this scheme attains good recognition performance with the PolyU and SDUMLA-FV databases, that it meets the design standard for cancellable biometric identification, and that it is robust to security and privacy attacks.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFVNet: An End-to-End Cancelable Finger Vein Network for Recognition;IEEE Transactions on Information Forensics and Security;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3