Analysis of Symmetrical/Asymmetrical Loading Influence of the Full-Suspension Downhill Bicycle’s Frame on the Crack Failure Formation at a Critical Point during Different Driving Scenarios and Design Improvement

Author:

Bulej VladimírORCID,Kuric Ivan,Sága MilanORCID,Vaško MilanORCID,Ságová Zuzana,Bartoš MichalORCID,Legutko StanislawORCID

Abstract

The article deals with the analysis of the existing full-suspension downhill bicycle’s frame damaged while using and the subsequent conceptual improved design of the critical point. The origin of symmetrical and asymmetrical bicycle loads in individual riding modes is investigated. Subsequently, their impact on the overall load of the frame and especially the identified critical point are assessed. An overview of different full-suspension bicycle frames, complemented by a literature overview of research related to cycling engineering and sport application is introduced. The first phase began with a kinematic analysis of the bicycle suspension system and an effect assessment of the symmetrical or asymmetrical distribution of forces, respectively, in the individual components. Furthermore, a strength analysis of the main frame was performed, taking into account the static and dynamic forces. Based on the results of the analyses performed in the ANSYS/Workbench, a critical frame point, as well as the role of individual driving regimes, were identified. The structural detail of the pocket under the saddle tube together with the asymmetrical combined load generated while out of saddle pedalling proved to be crucial for frame crack initiation and formation. Different design variants with improved stiffness were proposed for the given place. The chosen variant can be successfully implemented due to the final reduction of the maximum stress level approximately two times compared to the original pocket (only 50.4% of the original maximum stress) as well as a simple design and repair of the damaged area in terms of technology.

Funder

Slovak Research and Development Agency

VEGA

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3