3D Texture Reconstruction of Abdominal Cavity Based on Monocular Vision SLAM for Minimally Invasive Surgery

Author:

Wu Haibin,Xu Ruotong,Xu Kaiyang,Zhao Jianbo,Zhang Yan,Wang AiliORCID,Iwahori YujiORCID

Abstract

The depth information of abdominal tissue surface and the position of laparoscope are very important for accurate surgical navigation in computer-aided surgery. It is difficult to determine the lesion location by empirically matching the laparoscopic visual field with the preoperative image, which is easy to cause intraoperative errors. Aiming at the complex abdominal environment, this paper constructs an improved monocular simultaneous localization and mapping (SLAM) system model, which can more accurately and truly reflect the abdominal cavity structure and spatial relationship. Firstly, in order to enhance the contrast between blood vessels and background, the contrast limited adaptive histogram equalization (CLAHE) algorithm is introduced to preprocess abdominal images. Secondly, combined with AKAZE algorithm, the Oriented FAST and Rotated BRIEF(ORB) algorithm is improved to extract the features of abdominal image, which improves the accuracy of extracted symmetry feature points pair and uses the RANSAC algorithm to quickly eliminate the majority of mis-matched pairs. The medical bag-of-words model is used to replace the traditional bag-of-words model to facilitate the comparison of similarity between abdominal images, which has stronger similarity calculation ability and reduces the matching time between the current abdominal image frame and the historical abdominal image frame. Finally, Poisson surface reconstruction is used to transform the point cloud into a triangular mesh surface, and the abdominal cavity texture image is superimposed on the 3D surface described by the mesh to generate the abdominal cavity inner wall texture. The surface of the abdominal cavity 3D model is smooth and has a strong sense of reality. The experimental results show that the improved SLAM system increases the registration accuracy of feature points and the densification, and the visual effect of dense point cloud reconstruction is more realistic for Hamlyn dataset. The 3D reconstruction technology creates a realistic model to identify the blood vessels, nerves and other tissues in the patient’s focal area, enabling three-dimensional visualization of the focal area, facilitating the surgeon’s observation and diagnosis, and digital simulation of the surgical operation to optimize the surgical plan.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agricultural Machinery Tillage Area Calculation Algorithm;2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA);2024-02-27

2. SLAM-based technology to improve the impact of uneven illumination on minimally invasive surgery;AIP Conference Proceedings;2024

3. An Automatic and Robust Visual SLAM Method for Intra-Abdominal Environment Reconstruction;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-11-20

4. Registration of 2D monocular endoscopy to 3D CBCT for video-assisted thoracoscopic surgery;Medical Imaging 2023: Image-Guided Procedures, Robotic Interventions, and Modeling;2023-04-03

5. SMCEWS: Binary Robust Multicentre Features;Symmetry;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3