Optical Fiber Array Sensor for Force Estimation and Localization in TAVI Procedure: Design, Modeling, Analysis and Validation

Author:

Bandari NaghmehORCID,Dargahi JavadORCID,Packirisamy MuthukumaranORCID

Abstract

Transcatheter aortic valve implantation has shown superior clinical outcomes compared to open aortic valve replacement surgery. The loss of the natural sense of touch, inherited from its minimally invasive nature, could lead to misplacement of the valve in the aortic annulus. In this study, a cylindrical optical fiber sensor is proposed to be integrated with valve delivery catheters. The proposed sensor works based on intensity modulation principle and is capable of measuring and localizing lateral force. The proposed sensor was constituted of an array of optical fibers embedded on a rigid substrate and covered by a flexible shell. The optical fibers were modeled as Euler–Bernoulli beams with both-end fixed boundary conditions. To study the sensing principle, a parametric finite element model of the sensor with lateral point loads was developed and the deflection of the optical fibers, as the determinant of light intensity modulation was analyzed. Moreover, the sensor was fabricated, and a set of experiments were performed to study the performance of the sensor in lateral force measurement and localization. The results showed that the transmitted light intensity decreased up to 24% for an external force of 1 N. Additionally, the results showed the same trend between the simulation predictions and experimental results. The proposed sensor was sensitive to the magnitude and position of the external force which shows its capability for lateral force measurement and localization.

Funder

Concordia University

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3