Molecular Simulation of Methane Adsorption Capacity of Matrix Components of Shale

Author:

Liu Xiaoxue,Jiang ZhenxueORCID,Liu Shibin,Zhang Bo,Zhang KunORCID,Tang Xianglu

Abstract

Shale gas occurs mainly as adsorption and free gas. Among them, whether the adsorbed gas can be gradually desorbed or not is a major cause of stable and high yield. The matrix component is the main factor affecting the adsorption capacity of shale. In this paper, by simulation software named Materials Studio (MS), using Molecular Dynamics Simulation and Monte Carlo Simulation, the adsorption capacity of different matrix components under specific conditions is studied and the four models: relative concentration model, diffusion coefficient model, saturated adsorption capacity model and isosteric heat of adsorption model, are built. The simulation models show that the mineral matrix has a significant impact on the adsorption of methane molecules in shale: kerogen I > smectite > chlorite > illite > quartz. Kerogen I has the strongest adsorption capacity with high-density thick layer adsorption. Under the temperature (369.97 K) and the formation pressure (28.07 MPa) and under the condition of 6.0 nm in the cylindrical hole, excess adsorption amount of kerogen I is 13.418%, the diffusion coefficient is only 0.046 Å2/ps, saturated adsorption amount is 3.060 cm3/g, and the amount of adsorption heat is 9.598 kJ/mol. As the adsorption force on the pore wall is not as strong as the interaction repulsion force between adsorbents within a short distance, the clay minerals all have 2~4 layers of narrow layer and low-density adsorption. The adsorption thickness of the single layer is inversely proportional to its adsorption capacity, and the adsorption capacity is positively correlated with the opportunity of exposing oxygen atoms to form hydrogen bonds. Quartz has no obvious adsorption potential for methane molecules. This study is conducive to the quantitative evaluation of shale gas adsorption capacity, selection of favorable blocks and advantageous zones of shale gas reservoirs, and the improvement of development efficiency.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference47 articles.

1. Fractured shale-gas systems;AAPG Bull.,2002

2. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment;AAPG Bull.,2007

3. Unconventional hydrocarbon resources in China and the prospect of exploration and development;Pet. Explor. Dev.,2012

4. Recent development of the Barnett Shale play, Fort Worth Basin;West Tex. Geol. Soc. Bull.,2003

5. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia;Bull. Can. Pet. Geol.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3