Abstract
Explorations of indefinite nanocavities have attracted surging interest in the past few years as such cavities enable light confinement to exceptionally small dimensions, relying on the hyperbolic dispersion of their consisting medium. Here, we propose and study indefinite graphene nanocavities, which support ultra-compressed mode volumes with confinement factors up to 109. Moreover, the nanocavities we propose manifest anomalous scaling laws of resonances and can be effectively excited from the far field. The indefinite graphene cavities, based on low dimensional materials, present a novel rout to squeeze light down to the nanoscale, rendering a more versatile platform for investigations into ultra-strong light–matter interactions at mid-infrared to terahertz spectral ranges.
Funder
Science and Technology Planning Project of Hunan Province
National Natural Science Foundation of China
National University of Defense Technology
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献