Abstract
Superdiffusive spin transport has been proposed as a new mechanism of ultrafast demagnetization in layered magnetic nanostructures and demonstrated experimentally. However, it is unknown if it is possible for phonon transport to occur and manipulate ultrafast demagnetization. Here, we explore the ultrafast dynamics of demagnetization of an antiferromagnet/ferromagnet bilayer nanostructure, of a FeMn/MnGa bilayer film prepared by molecular beam epitaxy. Ultrafast dynamics of a two-step demagnetization were observed through the time-resolved magneto-optical Kerr effect. The first-step fast component of the two-step demagnetization occurred within ~200 fs, while the second-step slow component emerged in a few tens of picoseconds. For a single MnGa film, only the ultrafast dynamics of the first-step fast demagnetization were observed, revealing that the second-step slow demagnetization originates from interlayer phonon transport. A four-temperature model considering phonon transport was developed and used to effectively reproduce the observed ultrafast dynamics of two-step demagnetization. Our results reveal the effect of phonon transport on demagnetization for the first time and open up a new route to manipulate ultrafast demagnetization in layered magnetic structures.
Funder
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Foundation in China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献