Abstract
Since commercial non-woven air filtering materials have unstable filtering efficiency and poor moisture permeability for the abundant condensed aerosol particles in the highly humid atmospheric environment, the PLLA/PAN composite fiber material with a hydrophobic and hydrophilic gradient structure is designed and prepared by using electrode sputtering electro spinning technology. By characterizing and testing the filtrating effect of SEM, XRD, FTIR, wettability, mechanical property, N2 adsorption isotherm, and BET surface area, NaCl aerosol of PLLA fiber, PAN fiber, and PLLA/PAN composite fiber membranes, the study found that the electrode sputtering electrospinning is fine, the fiber mesh is dense, and fiber distribution is uniform when the diameter of the PAN fiber is 140–300 nm, and the PLLA fiber is 700–850 nm. In this case, PLLA/PAN composite fiber materials gather the hydrophobicity of PLLA fiber and the hydrophilicity of PAN fiber; its electrostatic effect is stable, its physical capturing performance is excellent, it can realize the step filtration of gas-solid liquid multiphase flow to avoid the rapid increase of air resistance in a high-humidity environment, and the filtrating efficiency η of NaCl aerosol particles with 0.3 μm reaches 99.98%, and the quality factor QF 0.0968 Pa−1. The manufacturing of PLLA/PAN composite fiber material provides a new method for designing and developing high-performance air filtration materials and a new technical means for the large-scale production of high-performance, high-stability, and low-cost polylactic acid nanofiber composites.
Funder
Natural Science Foundation of Shanxi Province
Subject
General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献