Analysis of Formation Mechanisms of Sugar-Derived Dense Carbons via Hydrogel Carbonization Method

Author:

Chen Liting,Fan Zheqiong,Mao Weiguo,Dai Cuiying,Chen Daming,Zhang Xinghong

Abstract

Four kinds of sugar (glucose, fructose, sucrose, and maltose) were selected as carbon precursors, and corresponding dense carbon products were prepared using a novel hydrogel carbonization method. The carbonization processes of sugar–polyacrylamide (sugar–PAM) hydrogels were studied in detail. The molecular structures in the raw materials were analyzed by proton nuclear magnetic resonance spectroscopy (1H NMR). Samples prepared at different temperatures were characterized by thermogravimetry analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy. The morphology and microstructure of sugar-derived carbons were confirmed by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results indicated that the sugar solution was surrounded by PAM with a three-dimensional network structure and formed hydrogels in the initial stage. The sugar solution was considered to be separated into nanocapsules. In each nanocapsule, sugar molecules could be limited within the hydrogel via walls formed by PAM chains. The hydroxyl group in the sugar molecules connected with PAM by the hydrogen bond and intermolecular force, which can strengthen the entire hydrogel system. The self-generated pressure of hydrogel constrains the foam of sugar during the heat treatment. Finally, dense carbon materials with low graphitization instead of porous structure were prepared at 1200 °C.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan

National Science and Technology Major Special Basic Research Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3