Abstract
The high designability of metamaterials has made them an attractive platform for devising novel optoelectronic devices. The demonstration of nonlinear metamaterials further indicates their potential in developing quantum applications. Here, we investigate designing nonlinear metamaterials consisting of the 3-fold (C3) rotationally symmetrical nanoantennas for generating and modulating entangled photons in the spatial degrees of freedom. Through tailoring the geometry and orientation of the nanoantennas, the parametric down conversion process inside the metamaterials can be locally engineered to generate entangled states with desired spatial properties. As the orbital angular momentum (OAM) states are valuable for enhancing the data capacity of quantum information systems, the photonic OAM entanglement is practically considered. With suitable nanostructure design, the generation of OAM entangled states is shown to be effectively realized in the discussed nonlinear metamaterial system. The nonlinear metamaterials present a perspective to provide a flexible platform for quantum photonic applications.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献